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Structure of spontaneous periodic deformations in hybrid aligned nematic layers
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Periodic deformations, arising spontaneously in hybrid nematic layers were investigated numerically. So
called splay stripes, which appear when the surface anchoring energy of the planar alignment was greater than
that of the homeotropic alignment, were considered. Conical degeneration of the anchoring is assumed. The
role of the layer thicknesd and the anchoring strengt' was studied by means of the dimensionless control
parametery=Wd/k,,; defined for each boundary. The saddle-splay elastic conkjamtas varied within the
limits given by general Ericksen inequalities. The director distributions were calculated. Two structures with
different properties were distinguished: one kgz<0 (mode 1 and the other fok,,>0 (mode 2. For given
nematic liquid crystal parameters, mode 1 existed wperceeds some critical value. Below this critigathe
director distortion decayed and the spatial period simultaneously diverged to infinity. As a result mode 1
disappeared and the homogeneously planar orientation was realized. The width of the stripes also increased
infinitely for high y. No upper limit of they range in which mode 1 could exist was found. Mode 2 existed for
vy ranging from O to a certain critical value. Above this limit the periodic structure was replaced by the
homogeneous hybrid alignment as a consequence of an infinite increase of the stripes’ widthk,Wewas
sufficiently small, they range was bounded from below, and a homogeneously planar orientation appeared for
low y. The visibility of the stripes between crossed polarizers was estimated by calculations of light transmis-
sion. In general, the stripes ft,<0 turned out to be more distinct than that fgr,> 0.
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I. INTRODUCTION numerically the structure of the splay stripes and conditions
for their occurrence. We focused on the case of 5CB—one of
Hybrid anchoring conditions in the nematic layer usuallythe substances used in experiments reported in Rgf$11]
induce two alternative structures. Typically, the director dis-and [12]. We calculated the director distribution within a
tribution is distorted with comparable contributions of splaysingle stripe and determined the ranges of layer parameters
and bend, resulting in a so called hybrid aligned nematigvhich allow the periodic states to exist. We also estimated
layer. However, if the layer is thinner than the thresholdthe visibility of the stripes as observed in a microscope by
valued,, the director field is unifornfil]. A uniform planar  calculating the light transmission through the system consist-
distribution occurs when planar anchoring prevails. In theing of the nematic layer placed between crossed polarizers.
opposite caséwhen the homeotropic anchoring dominates In Sec. Il the details of the considered system are given,
the uniform distribution is homeotropic. and the method of computation is described. Section Il pre-
In 1990, another possibility was found experimentally bysents results, and Sec. IV is devoted to a short discussion of
Lavrentovich and PergamenshcHi in thin layers with a  these.
hybrid orientation. The nematic was deposited on the surface
of glycerin with the upper surface free. The director align- Il. METHOD
ment was planar at the liquid crystal-glycerin interface, and
nearly homeotropic at the free surface. Azimuthal degenera- Our numerical calculations concerned the two-
tion of the anchoring conditions was expected due to thelimensional deformations possible in the infinite nematic
isotropic character of the ambient media. The stripes, visibléayer of thicknessl placed between two plates parallel to the
under a polarizing microscope, revealed the periodically de¢x,y) plane and positioned a=*d/2. Two angles were
formed structure(Similar periodic patterns were observed in necessary for a description of the director distributionh:
layers with pure plangi3] and pure homeotropiet] surface  [measured betweem and the &,y) plang and ¢ [between
conditions, and in the twisted structurgg under the influ- the x axis and the projection afi on the §,y) pland. We
ence of external fields. In the hybrid case, however, stripeshose a coordinate system in which the stripes were directed
can arise spontaneously, even without the action of anwlong thex axis. The angle® and ¢ depended oty andz
field.) The y dependencies were periodic. The periodicity can be
This effect was intensively studied theoreticalf~10]. described by the wave vectoply or by the spatial period
Two types of periodic structures were predicted: splay\ =2#/q, whereq=|q|. The ratios of the elastic constants
stripes, when the planar anchoring is stronger than the hd¢,=ks3/k;; andk,=ky,/k;; close to that of 5CB were cho-
meotropic one, and bend stripes in the opposite case. Thien to bek,=1.3[13] andk,=0.5[14].
paper is devoted to splay stripes. Our aim was to investigate In accordance with the anchoring conditions applied in
the experiment$2,11,13, we assumed conically degener-
ated anchoring. This means that the anchoring energy does
* Author to whom correspondence should be addressed. not depend on the azimuthal angte The planar alignment
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was assumed at=—d/2, and the homeotropic one at wherez is versor directed along theaxis. By introducing
=d/2. The finite anchoring energy was expressed in form the reduced quantitieg=y/\ and {=2z/d, the dimension-
less form of the integrands in E(B) can be obtained, where

fanchoring: - (%)WP COSZ eP_(%)WH Sinz O (1) v= ((d/)\)(&/ﬁ?]) ,8/(9{)2

k 1( (12

whereWp, Wy, 6p, and 6y are the anchoring strength pa- F=oo f {(Vn)2+k{n-(Vxn)]?
rameters and director tilt ang| i 2d Jo[J-1r

gles corresponding to planar and
homeotropic boundaries, respectively. In the following, the +ke[NX (VX N)]2dZ+2(ky+kg)[Np- (VNp)
dimensionless quantitieyp=Wpd/ky; and yy=W,d/k,;
are used. They measure the influence of the boundary condi- +NpX(VXnp) =ny- (V) =Ny X (VXny)]
tions on the layer structure. Low values of these parameters
correspond to thin layers, weak anchoring, and/or high elas- + yp(Np-2)2— 7H(nH'Z)2] d7, (4)
tic constant. They are due to the high effective curvature

stiffness of the layer. The director field in such a layer is then

resistive to deformations. On the other hand, high valueg of In this way the free energy density per unit area of the layer
correspond to effectively soft layers in which the directorF can be expressed in units equalkiq/d.

field is susceptible to distortions. The calculations were per- The director distribution over the cross section of the
formed for layers which were characterized by varioys  stripe, described by the functior®® »,{) and ¢(7,{), was
and yy for three ratiop=yp/yy: p=10,p=2 (which we  approximated by discrete anglég and ¢;; defined in the
recognize as high and medium, respectiyebndp=1.137  sites of theM XN regular lattice. The indices=1, ... M
(which was estimated in the experiment reported in Refandj=1, ... N determined the positions along theand z
[11]). axes, respectively. The coordinatess0 and 1 were deter-

In the case of structures which are deformed at the boundnined byi=1 andi=M + 1. The lattice sites at the bound-
aries (due to the finite anchoring strengtiand spatially ary plates with/=—3 and 3 were labeled byj=1 and]j
modulated along therthere alongy), the elastic free energy =N. In most case$! =48 andN=17; in the case of strong
density contains a term depending on the saddle-splay elastilistortions, however\ was increased up to 64. The planes
constantk,,. The ratios of the elastic constarks,/k;; and  determined byi =const andj=const[parallel to the %,y)
kos/kq; are related by the inequalities which stem from gen-and (x,z) planes respectively divided the cross section of
eral rulegi15] the stripe intoM X (N—1) rectangular cells. The average

anglesd and ¢ for each cell, as well as their spatial deriva-
KoalKy1<2—KoolKyq, tives were expressed by meanséyf and ¢;; . These values
(2) Were used to calculate the elastic free energy of the cell
counted per unit length in thedirection. The energy of the
cells adjacent to the boundary plates were supplemented by
the surface anchoring terms expressed by usé, of 6y,
In our computations, the values &f=k,,/k; ratios were ¢;1, and ¢;\. A sum of the energies related to all tihé
changed throughout the entire allowed rag®.5,0.5. The X (N—1) cells divided byx was equal to the total free en-
other surfacelike elastic constaat was assumed to be zero, ergy per unit area of the layer.
according to the theoretical result obtained by Yokoyama Initially, the values#;; =0 and¢;;=0 for all i andj, and
[16]. the ration/d=1, were imposed. To start the deformation, a

A single stripe of width\ was considered during the com- small deviation from the initial director position at one arbi-
putations. Periodic boundary conditions along theaxis trarily chosen site of the lattice was introduced. The final set
were imposed. The structure of the stripe was found by nuef the 6;; and¢;; and\/d variables, which approximated the
merical minimization of the free energy per unit area of thereal equilibrium director distribution, was calculated using
layer. This quantity was expressed as the energy of the stripan iteration process. During the computations, these vari-
counted per unit length along tixexis, divided by the width  ables were varied successively by small intervals. The free
\. The corresponding formula takes a fofmith accuracy to  energy per unit area of the layer was calculated after each
an unimportant constant change. New values of the variables were accepted if they

led to a lower free energy. This procedure was repeated until

- k22/k11$ k24/k11s k22/k11 .

kyy (N[ (o2 no further reduction in the total free energy could be
BN :J {(Vn)2+k[n-(VXxn)]? achieved. Then the interval was decreased and the process
0(J~-d2 repeated. As a result, a state with minimum energy was ob-
2 . tained. A similar procedure was applied successfully to in-
ol (VX FFdz 2(ki k) [ne- (V) vestigations of periodic deformations in other systé¢did.
+npX(VXnp)—ny- (Vng)—ny X (VXny)] The resulting discrete director distributions possessed in-
teresting symmetry properties along théirection:
Wp , Wy )
+-—(Mp-2)°= —(Ny-2) ]dy, (€©)) B - _ Y
K1 K1 0(7,{)=0(0.5- n,0)=—0(0.5+ ,0)=—0(1— 7,0),

®)
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¢(7,{)=—¢(0.5-5,{)=—¢(0.5+ n,{)=o(1— n,{). whereP andH refer to the planar and homeotropic boundary
and the differentiation with respect tg and{ is denoted by

We used this symmetry by computing the director distribu-the corresponding indices.

tion only in one quarter of the stripe cross section, i.e., for The set of the linearized Euler-Lagrange equations takes

i=1,... M/4. The results were suitably copied for the restthe forms

of the stripe. We approximated th# ) and ¢({) functions

by the polynomials Ki0,,T (1=K @, +0,=0,
0(n.0)=> am)" (6) @nyt (1K) Oyt ki =0. ©
k=0
g Its solutions depend on four constafsg, C,, Cz, andCy:
an
K 0(7,{) ={[C1((s/Q) = {)— C2]exp(Q¢)
e(m.5)= 2, bu(mE" @ +[Ca((/Q) + )+ Cylexp — Q0)}cosQ,

and found thakk =3 was sufficient in all cases. Therefore,

energy minimization was possible by changing theandb,

coefficients instead of;; andg;; . The set of angles obtained

in this way for some choice of parameters of the system ] ) ]

served as a starting point for computations of another paranf¥heres=(1+k;)/(1-k;), andQ=qd is the dimensionless

eters. wave number. The constants are determined by the boundary
The limiting values of the system parameters separatingonditions

the planar structure from the periodically deformed structure

can be analyzed using a small angle approximation. The free

energy per unit area of the weakly deformed layer reduces to

@(7,0)=[(C1{+Cr)exp QL) +(C3{+Cy)

X exp(—Q¢)]sinQ7, (10

O p+ (1—2ki—2Ks) @ ,p— ypOp=0,

Kippt (ki +2ks) 0,p=0,
1 (12

ki

i 2 2
= 2d fo [ f_l/2[¢”+ 0£+ 2(,07]0§

+kt(0§7+ @?‘297;<Pg)]d§+ 2(ki+ ko[ —@pb,p

+0p@,p+ ol ,u— Onen] T YpOp— Y5 dy

O+ (1—2ki—2Ks) @ i~ Yn0u=0,
kt¢§H+(kt+ 2ks)07]H=O. (11)

When functionq10) are substituted into Eq$l1), a system
of linear equations arises, which possesses a nontrivial solu-

(8) tion if and only if its determinant vanishes:
|
(A—vpB)P* (G+yp)P* (-C+ypD)P  (G—yp)P
(E-C)P* GP* (E-A)P ~-GP
(C+mWDP  (GHyP  (~A-yB)P* (G- yP*| 12
(E-A)P GP (E—C)P* ~GP*

In Eq. (12) the abbreviationdA= (k;+ks)Q+ 2k, /(1—k;),
B=1/2+(1+k)/[Q(1—ky)], C=—(ki+ks)Q+2k/(1
—ky), D=1/2—-(1+k)/[Q(1-k)], E=2(k+kg(1
+k)/(1—ky), G=-2(kitky)Q, P=exp@/2), and P*
=exp(—Q/2) were used.

Equation(12) gives the relation betwee®@ and the pa-
rameters of the layer. In particular, the(Q) dependence
can be found if the parametekg, k., kg, andp are con-
stant. Extremes of this functionyp,, determine the condi-

the stripes in the ¢p ,ks) plane.

The light transmission through the system consisting of
the periodically deformed layer placed between crossed po-
larizers was calculated by the Mueller matrix metHd@]
applied to a single stripe. The stripe was divided iio
segments and\—1=1024 sublayers. The directions of the
optical axes in these sublayers were determined by means of
N=1025 pairs of angles of;; and ¢;;, which were calcu-
lated by use of polynomial$6) and (7). A thicknessd

tion for arising of periodic deformations of the wave vector =1 um was assumed. The light transmission was calculated

Q.. The yp; values, calculated for various values ki,
determine the lower boundary of the region of existence

by use of 5CB room temperature refractive indices:
of=1.532 andh.=1.726[19] for the yellow light wavelength
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A=589nm. Due to the small thickness, the assumption of 4
normal incidence of the light beam on each sublayer was 45 | S5e0 60880000 S 6 B § § §oo
justified. The light transmission was obtained as OBBOS B 6§ & DV P B § & P
D% 8 0 § LSS0 8 B § & Po0m
DHBYV 8 0 8 £ TVVR 0 B8 § & SO0D
T=In/lo, 13 & DRRDS 6 b § §PPITLSS 8 8 § & ODeD
DVDD B B8 8 &SP B B gggggg
wherel 3 andl y are the intensities of the incident and emerg- mg%ggggggmmg%% g 8 & PoOm
ing light, respectively, given by the first components of the 01 Dod%E ggggm%g%g g gggggg
corresponding Stokes vectoBg and Sy . The light incident g.??‘gg%% 8 gyoam: QD 6 & PPCBT
iqui i - OB R 8 & & PPNTDDTE S § & PPORD
on the liquid crystal layer was assumed to be linearly polar rR99%e N 444
ized (with polarization direction making an angig4 with q) DOBBD G § & @ PEXDDDBD ? § § PP dD
i OB Q 0 & @ POIIDDD @ 6 & P sD
and determined by the Stokes vect®y. The subsequent oSS58 o00083s
Stokes vectors of the light emerging from thé sublayer, _.p51+ ©OEEDQ 0O POPDVBDD S § & POOD
forl=1,... N—1, are given by ] ) L
0 0.5 1
S=MS_1, (14 n
where M, is the Mueller matrix of thelth sublayer. The FIG. 1. Typical director distribution for the single stripe of
Stokes vector of the emerging light is mode 1:p=2, ks=—0.3, yp=1.4, and\/d=34.
SN=ASN-1 (9 thickness of the layer. A well defined critical valug,

which limits the range of existence of the stripes from below,
is evident. Close to the limiyp,, when the layer is “stiff,”
the periodic deformation is weak and thedependence of

V= (Tmas— Trmin)/(Trmaxt Trmin)» (16)  the angles is sinusoidal with small amplitudés({) and

em({). When yp tends toyp,, the amplitudesd,,({) and

whereT .« and T i, are the maximum and minimum trans- ¢,({) decrease to zero. Linear analysis, justified in this cir-
missions, respectively. We assumed that stripes were obsergumstance, giveQ,=0. In this way the homogeneous pla-
able whenv>0.1.

whereA is the Mueller matrix of the analyzer.
As a measure of visibility we defined the rafi20]

+ /4
IIl. RESULTS

Two types of the director distributions in periodically de- 0
formed hybrid layer were found: one type for negatkie
values and another type for positive values of kKjeratio. T- 4
Their properties will be presented separately in the follow- 1

Ing. /4

A. ks<0 (mode ) O o i 0.5

A typical director distribution within a well developed
stripe obtained foks<<O is illustrated in Fig. 1 by means of ; —
cylinders which symbolize the directors. Two halves of the -05 0 050
stripe with opposite senses of director distribution can be g
distinguished. The director is confined to the surface of a
cone with an oval base and an axis parallekt®y moving
alongy over the distanca at constantz, one observes that
the director rotates continuously around the cone axis by an
angle 2r. The shape of the cone dependszoffhis structure T - /4
is determined quantitatively by plots of the functiof(sy, {) 1
and ¢(#n,{) shown in Fig. 2. For giveny, the angle /4
0 changes almost linearly witlj, wherease is nearly con- n
stant. © o e

The spatial period of the deformation, depends on the T 777
parametersyp and y,. Since the calculations were per- _ i \EEEITTT T
formed for constant ratiogp/ vy, the results will be pre- ¥
sented as functions ofp. Figures 8a)—3(c) show the be- : Q
havior of the spatial period by means of plots @f as
functions of yp for several values okg and for the three FIG. 2. The angle® and ¢ for the typical single stripe of mode
ratios. The minimum spatial period exceeds several times the p=2, ks=—0.3, yp=1.4, and\/d=34.

-7/4 1

/4
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FIG. 4. The regions of existence of the periodically deformed
state. The solid line, common for g, presents the normalized
critical anchoring strength parametgp, /7y, as a function of the
negative saddle-splay elastic constagt The dashed lines show
vp !y, values corresponding to the equality of the free energies of

the periodic and homogeneous hybrid stae=e Sec. Y. The p
ratios are indicated.

wherey.=p—1 is the critical value separating the homoge-
neous hybrid and homogeneous planar orientations. When

tends to—0.5, i.e., to—k,, the lower critical limityp, tends
to 0. The results of the numerical minimization of the free
energy agreed very well with E@17).

The dependence a&f on thekg ratio is illustrated in Fig. 5
by the functionQ(ks) plotted foryp= vy, . The spatial period
tends asymptotically to infinity whekg tends to 0. In the
vicinity of k=0, the power lawQ=|k{“ is approximately
satisfied witha~1.2 for eachp.

B. ks>0 (mode 2

0 20 Yp

40 For a positivek, ratio, the director distribution is different
from that of mode 1(Fig. 6). As previously, the director

FIG. 3. The dimensionless wave numb@rof mode 1 as a

function of the planar anchoring parametgs for the kg values 0.9

indicated at each curvéa) p=1.137,(b) p=2, and(c) p=10. The
dotted lines correspond to the periodic deformations for which the

free energy is higher than the energy of the homogeneous hybrid
structure.

nar structure arises whep<vyp,. For highyp, when the
layer is “soft,” the deformation is strong. The period of the
strongly deformed structure also increases wigh but does
not diverge for any finiteyp .

The dependence afp;, onkg is shown in Fig. 4. It can be
found using linear analysis, and expressed in a normalized
form, common for anyp= yp /vy ratio,

vpilve=4(Kitks)(1—ki—ks), 17

021702-5
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-0.5 -0.25 k 0
)

FIG. 5. The dimensionless wave numiggras a function of the
negative saddle-splay elastic constlpfor yp= v, ; the p values
are indicated for each curve.
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FIG. 6. The typical director distribution for the single stripe of
mode 2:p=2, ks=0.25, yp=5, and\/d=4.6.
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(a)

(b)

2 3

rotates around the axis on the surface of a cone. However,
the senses of the rotation in various parts of the layer are
different. Close to the planar wall the structure is very simi-
lar to that of theks<O case. In the neighborhood of the
homeotropic wall, the rotation is reversed. The plots of the

A

functions 6(#n,¢) and¢(7,{) are presented in Fig. 7.
t /4
0
1— /4
/4 + 1
n
6 o 0.5
-n/4+

r /4

+— /4

FIG. 7. The angle® and ¢ for the typical single stripe of mode
2: p=2,ks=0.25, yp=5, and\/d=4.6.

40

0 20

Yp

FIG. 8. The dimensionless wave numb@rof mode 2 as a
function of the planar anchoring parametgs for the kg values
indicated at each curvéa) p=1.137,(b) p=2, and(c) p=10. In
(c) the two branches of thie,=0.1 curve correspond to two ranges
of the stripes’ existence.

For high values ofyp, the deformation is strong. Both
anglesd and ¢ depend significantly oz. The width of the
stripes depends onp, as illustrated in Figs. &)—-8(c) by
plots of Q as functions ofyp for several values d{g, and for
the threep values. The narrowest width of the stripes is
smaller than the layer thickness. Nevertheless the stripes be-
come wider with increasing/,. When yp approaches the
upper limiting valueyp,, \ tends rapidly to infinity. The
anglesé in the two halves of the stripe become nearly inde-

021702-6
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1.137
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ks

FIG. 9. Regions of existence of the periodically deformed state FIG. 10. The dimensionless wave numigeas a function of the
for the positive saddle-splay elastic constént The inset shows positive saddle-splay elastic constdqtfor yp= 7y, ; the p values
the details foryp/y.<1; solid line: p=1.137; dashed linep are indicated for each curve.
=2; dotted line:p=10. In the main figure, the periodically de-
formed state takes place below each curve, whereas the homoge-

neous hybrid alignment is realized above it. In the inset, the peri- . . . .
odic state occurs on the right-hand side of each curve, and thgolarlzers(maklng angles oftw/4 with the stripe} allow

uniform planar orientation appears on the left side. one to an estimate of their visibility. Figure 11 shows three
examples of th@ (%) functions for a high contrast stripe, for
a poorly visible stripe and for a stripe with an additional dark
line in the middle of the central bright ban@uch a pattern
corresponds to the experimental observatighl.) It was
found that the stripes of mode 1 were distinct almost in the

The anglesp become close to zero, with the exception of whole range of their existence, whereas only the strong pe-

narrow regions(*walls” ) between the halves. The nearly riodic deformations of mode 2 were visible when they ap-

homogeneous regions in each half of a s_trlpe spread over t € ared for sufficiently higl,,>0.
whole layer and the homogeneous hybrid structure replaces

the periodic state.

pendent ofy over a significant part of each half, and take
values corresponding to the homogeneous hybrid structur

In a narrow range oks>0 in vicinity of ks=0, there are IV. DISCUSSION
two ranges ofyp for which periodic deformations can be
realized: G<yp<vyp; and yp,<yp<yp,. They are sepa- Periodic deformations in the hybrid nematic layers are

rated by a gap in which the planar state takes place. Thiirly complex phenomena. Their features depend on many
limiting valuesyp, and v, , calculated by numerical mini- Parameters—three elastic constant ratlgs k;, and ks
mization of the free energy, and those derived from the linea@Nd at least two anchoring parametess and yy . In this

analysis coincide. The amplitudés(¢) ande,,(¢) decrease paper, we found_ f[he structur(_a of t_he splay stripes and deter-
to zero whenyp— yh; OF yp— h,. Whereas the wave mined the conditions for their existence. We focused on a
P P1 P P1: -

lengths remain finite. For highek., the gap betweenyh, single typical liquid crystal and chose the material param-

and yp, disappears. This means that in the prevailing part of

the positiveks range the homogeneous planar state is forbid-

den. The stripes of finite width may exist down 4@ =0.

The amplitude®,,({) and¢,,(¢) reach a minimum for some B~

vp and do not vanish. Figure 9 summarizes the above state-

ments, showing the regions of existence of the interesting

states in the ¢p/vy.,ks) plane for the three ratios. The

uniform planar alignment can exist only in the narrow range

of ks in vicinity of ks=0. This range increases with The

upper limit yp, grows withks. ./ LN %
Figure 10 shows the dependence of the spatial period on 0 L "

ks for yp= .. The spatial period diverges to infinity when 0 0.5 1

ks tends to O according to approximate power 18w kf, n

where 8~0.5 for eachp.

05

FIG. 11. The exemplary transmission of a single stripe between
crossed polarizerp=2; solid line: a distinct stripeks=—0.15,
vp=1.1, and\/d=86; dashed line: a poorly visible stripég

The calculations of light transmitted through the different=0.05, yp=1, and\/d=6.1; dotted line: a “doubled” stripeks
parts of a stripe when the layer is placed between crossed —0.15, yp=1.6, and\/d=166.

C. Visibility of the stripes
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eters of 5CB. We assumed a conical degeneracy of the sur- The experimental data presented in Réfl] show that
face anchoring. Since the value of the surfacelike elastic corthe spatial period\ depends monotonically on the layer
stantk,, is unknown, it was varied within the limits deter- thicknessd, and range ofd in which the stripes were ob-
mined by the Ericksen inequalities. The crucial rolekgf  served was bounded from above. Qualitatively, behavior of
described in Ref[8] was confirmed. The properties of the this type corresponds to mode 2 if not very smgll values
small periodic deformations were studied using a lineamre considered. However, the stripes of mode 2 are rather
analysis method. narrow, and\ is comparable withd in a wide range ofyp.

Our results are consistent with the theoretical predictionshe narrowest observed stripes were about ten times wider
made in Ref[8]. The results described in Sec. Il and somep4n d, so they cannot be identified with mode 2. As con-

additional C?Iﬁulatiops .menftioned_ below ha”ﬁw the l_mai”cerns mode 1, the experimental evidence of the uniform pla-
g;?ggtrit(':elz )?erts ?Opsgc;jj'r%r(:i‘ﬁgggt;nfso;% \fvse ybrid aligned, o grientation for very thin layerf2] corresponds to its

(i) There are two modes of the splay stripes, corresponoerOpertles.' The exp.enmental dependengd) is also com-
ing to two signs of the quantitR=1— 2k, 2K.. They parable with numerical data found for mode(vikhen vp IS
differ not only in the form of the director distribution but n_ot extremely small However, the prenment S.hOWS some
also in their minimum widths. For mode X is always SIgns of divergence 9f ,thk(d) function, _suggestmg the ex-
greater thard, whereas for mode 2 the relation<d can iStence of an upper limiting valuge,, which was not found
take place. numerically. Summarizing, a qualitative agreement between

In our case, wherk,=0.5, R changes its sign at;=0. the experimental data and the numerical results cannot be

This explains the peculiar role &=0. In Ref.[8], where fully a<_:hieved either for mode 1 or mode 2 if conical degen-
k.= 1, there were also two rangeskaf, separated by the gap €racy is assumed.
centered ak,=—0.5 (i.e., atR=0). We checked numeri-  As stated above ifii), the limit yp, appears, and(yp1)
cally that there were two different periodic modes in each ofoecomes finite when the surface director rotations about the
this ranges. Their structure was different from modes 1 and 2xis are hindered. It seems to be plausible that numerical
illustrated in Figs. 1 and 6. This result reveals that one casimulations of mode 1 would give results consistent with the
expect many variants of the periodic director distributionsexperimental data, if the surface anchoring conditions were
corresponding to various material parameters and anchoringondegenerated. Therefore, we suggest that assumptions
conditions. In particular the role df, seems to be equally concerning the degeneracy of the surface anchoring or the
important as that ok;. ideal planar and homeotropic conditions do not exactly re-
(i) The stripes of mode 1 were found for arbitrarily high flect the real physical situation taking place during the ex-
vp. We relate this result to the conical degeneracy of thgeriments. We hope that future experiments will yield addi-
surface anchoring. We checked numerically that when théional material for verification of corresponding numerical
rotations of the surface director around thexis were hin-  simulations.
dered(as assumed in Ref8]), the wave number of the pe- The periodic deformations described in this paper can be
riodic structure decreased to zero for finjtig. This denotes considered as an interesting example of the pattern formation
the existence of an upper boundayy, between the stripes phenomena which are observed in various physical systems
and the homogeneous hybrid regions due to the infinite dif21]. In general, spatially periodic patterns arise under the
vergence of the spatial period. influence of external excitation when some threshold value
In the case of the conical degeneracy, one can tentativelgf a suitable stress parameter is exceeded. The system be-
estimate the extent of the periodic state by comparing its freeomes unstable to infinitesimal perturbations with wave vec-
energy per unit area with the energy of the homogeneousltor g, which are amplified. A new equilibrium state arises
hybrid aligned layer. With this approach, the upper limitswith the appearance of self-organization and order, which is
vp, correspond to the equality of these energies. They areeen as a pattern.
shown in Fig. 4 by dashed lines. In real samples, the lateral For potential systems such as hybrid aligned nematic lay-
boundaries and other imperfections can limit the largest posers, the amplitude of the perturbations is governed by equa-
sible width of the stripe. tions which have the form of equilibrium conditions
Another effect, which we relate to the conical degeneracyfor forces or torques. In our case, the corresponding
is the divergence of the mode 1 spatial period whgriends  equations concern the elastic, viscous, and surface torques
to yp1. The results of Ref{8], and our additional calcula- exerted on the director. Thg /vy, ratio can be adopted as a
tions, showed finitex at yp; if nondegenerated anchoring proper measure of the excitation. The small anglend ¢
conditions were imposed. On the other hand, when the conican be treated as perturbations of the uniform planar state.
cal degeneracy is introduced to equations used in Rf. Their time evolution can be described by exponential term
the divergence is obtained. exp(ot), whereo is the growth rate. A detailed analysis of
(iii) For sufficiently high positiveks, the yp range of the the growth of the instability is beyond the scope of this pa-
stripes occurrence spreads downye=0. (This effect was per. Nevertheless let us note that the result of linear analysis
also presented in Ref8] for ks>0.) For small values of expressed by Eq(17) corresponds to the critical value
positiveks, we found two ranges ofp (Fig. 10 separated =0, which separates the conditions for damping the pertur-
by a gap for which the uniform planar orientation was real-bations <<0) from the conditions for amplifying themo(
ized. >0).
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