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Structure of spontaneous periodic deformations in hybrid aligned nematic layers

Dariusz Krzyżański* and Grzegorz Derfel
Institute of Physics, Technical University of Ło´dź, ul. Wólczańska 219, 93-005 Ło´dź, Poland

~Received 17 July 2000; published 17 January 2001!

Periodic deformations, arising spontaneously in hybrid nematic layers were investigated numerically. So
called splay stripes, which appear when the surface anchoring energy of the planar alignment was greater than
that of the homeotropic alignment, were considered. Conical degeneration of the anchoring is assumed. The
role of the layer thicknessd and the anchoring strengthW was studied by means of the dimensionless control
parameterg5Wd/k11 defined for each boundary. The saddle-splay elastic constantk24 was varied within the
limits given by general Ericksen inequalities. The director distributions were calculated. Two structures with
different properties were distinguished: one fork24,0 ~mode 1! and the other fork24.0 ~mode 2!. For given
nematic liquid crystal parameters, mode 1 existed wheng exceeds some critical value. Below this criticalg, the
director distortion decayed and the spatial period simultaneously diverged to infinity. As a result mode 1
disappeared and the homogeneously planar orientation was realized. The width of the stripes also increased
infinitely for high g. No upper limit of theg range in which mode 1 could exist was found. Mode 2 existed for
g ranging from 0 to a certain critical value. Above this limit the periodic structure was replaced by the
homogeneous hybrid alignment as a consequence of an infinite increase of the stripes’ width. Whenk24.0 was
sufficiently small, theg range was bounded from below, and a homogeneously planar orientation appeared for
low g. The visibility of the stripes between crossed polarizers was estimated by calculations of light transmis-
sion. In general, the stripes fork24,0 turned out to be more distinct than that fork24.0.

DOI: 10.1103/PhysRevE.63.021702 PACS number~s!: 61.30.Cz, 61.30.Gd
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I. INTRODUCTION

Hybrid anchoring conditions in the nematic layer usua
induce two alternative structures. Typically, the director d
tribution is distorted with comparable contributions of spl
and bend, resulting in a so called hybrid aligned nema
layer. However, if the layer is thinner than the thresho
valuedc , the director field is uniform@1#. A uniform planar
distribution occurs when planar anchoring prevails. In
opposite case~when the homeotropic anchoring dominate!,
the uniform distribution is homeotropic.

In 1990, another possibility was found experimentally
Lavrentovich and Pergamenshchik@2# in thin layers with a
hybrid orientation. The nematic was deposited on the surf
of glycerin with the upper surface free. The director alig
ment was planar at the liquid crystal-glycerin interface, a
nearly homeotropic at the free surface. Azimuthal degen
tion of the anchoring conditions was expected due to
isotropic character of the ambient media. The stripes, vis
under a polarizing microscope, revealed the periodically
formed structure.~Similar periodic patterns were observed
layers with pure planar@3# and pure homeotropic@4# surface
conditions, and in the twisted structures@5# under the influ-
ence of external fields. In the hybrid case, however, stri
can arise spontaneously, even without the action of
field.!

This effect was intensively studied theoretically@6–10#.
Two types of periodic structures were predicted: sp
stripes, when the planar anchoring is stronger than the
meotropic one, and bend stripes in the opposite case.
paper is devoted to splay stripes. Our aim was to investig
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numerically the structure of the splay stripes and conditio
for their occurrence. We focused on the case of 5CB—on
the substances used in experiments reported in Refs.@2#, @11#
and @12#. We calculated the director distribution within
single stripe and determined the ranges of layer parame
which allow the periodic states to exist. We also estima
the visibility of the stripes as observed in a microscope
calculating the light transmission through the system cons
ing of the nematic layer placed between crossed polarize

In Sec. II the details of the considered system are giv
and the method of computation is described. Section III p
sents results, and Sec. IV is devoted to a short discussio
these.

II. METHOD

Our numerical calculations concerned the tw
dimensional deformations possible in the infinite nema
layer of thicknessd placed between two plates parallel to th
(x,y) plane and positioned atz56d/2. Two angles were
necessary for a description of the director distribution:u
@measured betweenn and the (x,y) plane# and w @between
the x axis and the projection ofn on the (x,y) plane#. We
chose a coordinate system in which the stripes were dire
along thex axis. The anglesu and w depended ony and z.
The y dependencies were periodic. The periodicity can
described by the wave vectorqiy or by the spatial period
l52p/q, whereq5uqu. The ratios of the elastic constan
kb5k33/k11 andkt5k22/k11 close to that of 5CB were cho
sen to bekb51.3 @13# andkt50.5 @14#.

In accordance with the anchoring conditions applied
the experiments@2,11,12#, we assumed conically degene
ated anchoring. This means that the anchoring energy d
not depend on the azimuthal anglew. The planar alignment
©2001 The American Physical Society02-1
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DARIUSZ KRZYŻAŃSKI AND GRZEGORZ DERFEL PHYSICAL REVIEW E63 021702
was assumed atz52d/2, and the homeotropic one atz
5d/2. The finite anchoring energy was expressed in form

f anchoring52~ 1
2 !WP cos2 uP2~ 1

2 !WH sin2 uH , ~1!

whereWP , WH , uP , anduH are the anchoring strength pa
rameters and director tilt angles corresponding to planar
homeotropic boundaries, respectively. In the following, t
dimensionless quantitiesgP5WPd/k11 and gH5WHd/k11
are used. They measure the influence of the boundary co
tions on the layer structure. Low values of these parame
correspond to thin layers, weak anchoring, and/or high e
tic constant. They are due to the high effective curvat
stiffness of the layer. The director field in such a layer is th
resistive to deformations. On the other hand, high valuesg
correspond to effectively soft layers in which the direc
field is susceptible to distortions. The calculations were p
formed for layers which were characterized by variousgP
andgH for three ratiosp5gP /gH : p510, p52 ~which we
recognize as high and medium, respectively!, andp51.137
~which was estimated in the experiment reported in R
@11#!.

In the case of structures which are deformed at the bou
aries ~due to the finite anchoring strength! and spatially
modulated along them~here alongy!, the elastic free energy
density contains a term depending on the saddle-splay el
constantk24. The ratios of the elastic constantsk22/k11 and
k24/k11 are related by the inequalities which stem from ge
eral rules:@15#

k24/k11<22k22/k11,
~2!

2k22/k11<k24/k11<k22/k11.

In our computations, the values ofks5k24/k11 ratios were
changed throughout the entire allowed range~20.5,0.5!. The
other surfacelike elastic constantk13 was assumed to be zero
according to the theoretical result obtained by Yokoya
@16#.

A single stripe of widthl was considered during the com
putations. Periodic boundary conditions along they axis
were imposed. The structure of the stripe was found by
merical minimization of the free energy per unit area of t
layer. This quantity was expressed as the energy of the st
counted per unit length along thex axis, divided by the width
l. The corresponding formula takes a form~with accuracy to
an unimportant constant!

F5
k11

2l E
0

l H E
2d/2

d/2

$~¹n!21kt@n•~¹3n!#2

1kb@n3~¹3n!#2%dz12~kt1ks!@nP•~¹nP!

1nP3~¹3nP!2nH•~¹nH!2nH3~¹3nH!#

1
WP

k11
~nP•z!22

WH

k11
~nH•z!2J dy, ~3!
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wherez is versor directed along thez axis. By introducing
the reduced quantitiesh5y/l and z5z/d, the dimension-
less form of the integrands in Eq.~3! can be obtained, where
¹5„„d/l)(]/]h),]/]z…:

F5
k11

2d E
0

1H E
21/2

1/2

$~¹n!21kt@n•~¹3n!#2

1kb@n3~¹3n!#2%dz12~kt1ks!@nP•~¹nP!

1nP3~¹3nP!2nH•~¹nH!2nH3~¹3nH!#

1gP~nP•z!22gH~nH•z!2J dh, ~4!

In this way the free energy density per unit area of the la
F can be expressed in units equal tok11/d.

The director distribution over the cross section of t
stripe, described by the functionsu(h,z) and w(h,z), was
approximated by discrete anglesu i j and w i j defined in the
sites of theM3N regular lattice. The indicesi 51, . . . ,M
and j 51, . . . ,N determined the positions along they andz
axes, respectively. The coordinatesh50 and 1 were deter-
mined byi 51 andi 5M11. The lattice sites at the bound
ary plates withz52 1

2 and 1
2 were labeled byj 51 and j

5N. In most casesM548 andN517; in the case of strong
distortions, however,M was increased up to 64. The plan
determined byi 5const andj 5const @parallel to the (x,y)
and (x,z) planes respectively#, divided the cross section o
the stripe intoM3(N21) rectangular cells. The averag
anglesu andw for each cell, as well as their spatial deriv
tives were expressed by means ofu i j andw i j . These values
were used to calculate the elastic free energy of the
counted per unit length in thex direction. The energy of the
cells adjacent to the boundary plates were supplemente
the surface anchoring terms expressed by use ofu i1 , u iN ,
w i1 , and w iN . A sum of the energies related to all theM
3(N21) cells divided byl was equal to the total free en
ergy per unit area of the layer.

Initially, the valuesu i j 50 andw i j 50 for all i and j, and
the ratiol/d51, were imposed. To start the deformation,
small deviation from the initial director position at one arb
trarily chosen site of the lattice was introduced. The final
of theu i j andw i j andl/d variables, which approximated th
real equilibrium director distribution, was calculated usi
an iteration process. During the computations, these v
ables were varied successively by small intervals. The f
energy per unit area of the layer was calculated after e
change. New values of the variables were accepted if t
led to a lower free energy. This procedure was repeated u
no further reduction in the total free energy could
achieved. Then the interval was decreased and the pro
repeated. As a result, a state with minimum energy was
tained. A similar procedure was applied successfully to
vestigations of periodic deformations in other systems@17#.

The resulting discrete director distributions possessed
teresting symmetry properties along they direction:

u~h,z!5u~0.52h,z!52u~0.51h,z!52u~12h,z!,

~5!

2-2
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STRUCTURE OF SPONTANEOUS PERIODIC . . . PHYSICAL REVIEW E 63 021702
w~h,z!52w~0.52h,z!52w~0.51h,z!5w~12h,z!.

We used this symmetry by computing the director distrib
tion only in one quarter of the stripe cross section, i.e.,
i 51, . . . ,M /4. The results were suitably copied for the re
of the stripe. We approximated theu(z) andw(z) functions
by the polynomials

u~h,z!5 (
k50

K

ak~h!zk ~6!

and

w~h,z!5 (
k50

K

bk~h!zk, ~7!

and found thatK53 was sufficient in all cases. Therefor
energy minimization was possible by changing theak andbk
coefficients instead ofu i j andw i j . The set of angles obtaine
in this way for some choice of parameters of the syst
served as a starting point for computations of another par
eters.

The limiting values of the system parameters separa
the planar structure from the periodically deformed struct
can be analyzed using a small angle approximation. The
energy per unit area of the weakly deformed layer reduce

F5
k11

2d E
0

1H E
21/2

1/2

@wh
21uz

212whuz

1kt~uh
21wz

222uhwz!#dz12~kt1ks!@2wPuhP

1uPwhP1wHuhH2uHwhH#1gPuP
2 2gHuH

2 J dh

~8!
or

o

02170
-
r
t

-

g
e
ee
to

whereP andH refer to the planar and homeotropic bounda
and the differentiation with respect toh, andz is denoted by
the corresponding indices.

The set of the linearized Euler-Lagrange equations ta
the forms

ktuhh1~12kt!whz1uzz50,

whh1~12kt!uhz1ktwzz50. ~9!

Its solutions depend on four constantsC1 , C2 , C3 , andC4 :

u~h,z!5$@C1„~s/Q!2z…2C2#exp~Qz!

1@C3„~s/Q!1z…1C4#exp~2Qz!%cosQh,

w~h,z!5@~C1z1C2!exp~Qz!1~C3z1C4!

3exp~2Qz!#sinQh, ~10!

wheres5(11kt)/(12kt), andQ5qd is the dimensionless
wave number. The constants are determined by the boun
conditions

uzP1~122kt22ks!whP2gPuP50,

ktwzP1~kt12ks!uhP50,

uzH1~122kt22ks!whH2gHuH50,

ktwzH1~kt12ks!uhH50. ~11!

When functions~10! are substituted into Eqs.~11!, a system
of linear equations arises, which possesses a nontrivial s
tion if and only if its determinant vanishes:
U ~A2gPB!P* ~G1gP!P* ~2C1gPD !P ~G2gP!P

~E2C!P* GP* ~E2A!P 2GP

~C1gHD !P ~G1gH!P ~2A2gHB!P* ~G2gH!P*

~E2A!P GP ~E2C!P* 2GP*
U50, ~12!
of
po-

e
s of

ted
In Eq. ~12! the abbreviationsA5(kt1ks)Q12kt /(12kt),
B51/21(11kt)/@Q(12kt)#, C52(kt1ks)Q12kt /(1
2kt), D51/22(11kt)/@Q(12kt)#, E52(kt1ks)(1
1kt)/(12kt), G522(kt1ks)Q, P5exp(Q/2), and P*
5exp(2Q/2) were used.

Equation~12! gives the relation betweenQ and the pa-
rameters of the layer. In particular, thegP(Q) dependence
can be found if the parameterskb , kt , ks , and p are con-
stant. Extremes of this function,gP1 , determine the condi-
tion for arising of periodic deformations of the wave vect
Q1 . The gP1 values, calculated for various values ofks ,
determine the lower boundary of the region of existence
 f

the stripes in the (gP ,ks) plane.
The light transmission through the system consisting

the periodically deformed layer placed between crossed
larizers was calculated by the Mueller matrix method@18#
applied to a single stripe. The stripe was divided intoM
segments andN2151024 sublayers. The directions of th
optical axes in these sublayers were determined by mean
N51025 pairs of angles ofu i j and w i j , which were calcu-
lated by use of polynomials~6! and ~7!. A thicknessd
51 mm was assumed. The light transmission was calcula
by use of 5CB room temperature refractive indices:no
51.532 andne51.726@19# for the yellow light wavelength
2-3
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DARIUSZ KRZYŻAŃSKI AND GRZEGORZ DERFEL PHYSICAL REVIEW E63 021702
L5589 nm. Due to the small thickness, the assumption
normal incidence of the light beam on each sublayer w
justified. The light transmission was obtained as

T5I N /I 0 , ~13!

whereI 0 andI N are the intensities of the incident and eme
ing light, respectively, given by the first components of t
corresponding Stokes vectorsS0 andSN . The light incident
on the liquid crystal layer was assumed to be linearly po
ized~with polarization direction making an anglep/4 with q!
and determined by the Stokes vectorS0 . The subsequen
Stokes vectors of the light emerging from thel th sublayer,
for l 51, . . . ,N21, are given by

Sl5M lSl 21 , ~14!

where M l is the Mueller matrix of thel th sublayer. The
Stokes vector of the emerging light is

SN5ASN21 , ~15!

whereA is the Mueller matrix of the analyzer.
As a measure of visibility we defined the ratio@20#

V5~Tmax2Tmin!/~Tmax1Tmin!, ~16!

whereTmax andTmin are the maximum and minimum tran
missions, respectively. We assumed that stripes were obs
able whenV.0.1.

III. RESULTS

Two types of the director distributions in periodically d
formed hybrid layer were found: one type for negativeks
values and another type for positive values of theks ratio.
Their properties will be presented separately in the follo
ing.

A. ksË0 „mode 1…

A typical director distribution within a well develope
stripe obtained forks,0 is illustrated in Fig. 1 by means o
cylinders which symbolize the directors. Two halves of t
stripe with opposite senses of director distribution can
distinguished. The director is confined to the surface o
cone with an oval base and an axis parallel tox. By moving
alongy over the distancel at constantz, one observes tha
the director rotates continuously around the cone axis by
angle 2p. The shape of the cone depends onz. This structure
is determined quantitatively by plots of the functionsu(h,z)
and w(h,z) shown in Fig. 2. For givenh, the angle
u changes almost linearly withz, whereasw is nearly con-
stant.

The spatial period of the deformation,l, depends on the
parametersgP and gH . Since the calculations were pe
formed for constant ratiosgP /gH , the results will be pre-
sented as functions ofgP . Figures 3~a!–3~c! show the be-
havior of the spatial period by means of plots ofQ as
functions ofgP for several values ofks and for the threep
ratios. The minimum spatial period exceeds several times
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thickness of the layer. A well defined critical valuegP1 ,
which limits the range of existence of the stripes from belo
is evident. Close to the limitgP1 , when the layer is ‘‘stiff,’’
the periodic deformation is weak and theh dependence of
the angles is sinusoidal with small amplitudesum(z) and
wm(z). When gP tends togP1 , the amplitudesum(z) and
wm(z) decrease to zero. Linear analysis, justified in this c
cumstance, givesQ150. In this way the homogeneous pla

FIG. 1. Typical director distribution for the single stripe o
mode 1:p52, ks520.3, gP51.4, andl/d534.

FIG. 2. The anglesu andw for the typical single stripe of mode
1: p52, ks520.3, gP51.4, andl/d534.
2-4
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nar structure arises whengP,gP1 . For highgP , when the
layer is ‘‘soft,’’ the deformation is strong. The period of th
strongly deformed structure also increases withgP , but does
not diverge for any finitegP .

The dependence ofgP1 on ks is shown in Fig. 4. It can be
found using linear analysis, and expressed in a normal
form, common for anyp5gP /gH ratio,

gP1 /gc54~kt1ks!~12kt2ks!, ~17!

FIG. 3. The dimensionless wave numberQ of mode 1 as a
function of the planar anchoring parametergP for the ks values
indicated at each curve:~a! p51.137,~b! p52, and~c! p510. The
dotted lines correspond to the periodic deformations for which
free energy is higher than the energy of the homogeneous hy
structure.
02170
d

wheregc5p21 is the critical value separating the homog
neous hybrid and homogeneous planar orientations. Wheks
tends to20.5, i.e., to2kt , the lower critical limitgP1 tends
to 0. The results of the numerical minimization of the fr
energy agreed very well with Eq.~17!.

The dependence ofl on theks ratio is illustrated in Fig. 5
by the functionQ(ks) plotted forgP5gc . The spatial period
tends asymptotically to infinity whenks tends to 0. In the
vicinity of ks50, the power lawQ5uksua is approximately
satisfied witha'1.2 for eachp.

B. ksÌ0 „mode 2…

For a positiveks ratio, the director distribution is differen
from that of mode 1~Fig. 6!. As previously, the director

e
rid

FIG. 4. The regions of existence of the periodically deform
state. The solid line, common for allp, presents the normalized
critical anchoring strength parametergP1 /gc as a function of the
negative saddle-splay elastic constantks . The dashed lines show
gP /gc values corresponding to the equality of the free energies
the periodic and homogeneous hybrid states~see Sec. IV!. The p
ratios are indicated.

FIG. 5. The dimensionless wave numberQ as a function of the
negative saddle-splay elastic constantks for gP5gc ; the p values
are indicated for each curve.
2-5
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DARIUSZ KRZYŻAŃSKI AND GRZEGORZ DERFEL PHYSICAL REVIEW E63 021702
rotates around thex axis on the surface of a cone. Howeve
the senses of the rotation in various parts of the layer
different. Close to the planar wall the structure is very sim
lar to that of theks,0 case. In the neighborhood of th
homeotropic wall, the rotation is reversed. The plots of
functionsu(h,z) andw(h,z) are presented in Fig. 7.

FIG. 7. The anglesu andw for the typical single stripe of mode
2: p52, ks50.25,gP55, andl/d54.6.

FIG. 6. The typical director distribution for the single stripe
mode 2:p52, ks50.25,gP55, andl/d54.6.
02170
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For high values ofgP , the deformation is strong. Both
anglesu and w depend significantly onz. The width of the
stripes depends ongP , as illustrated in Figs. 8~a!–8~c! by
plots ofQ as functions ofgP for several values ofks , and for
the threep values. The narrowest width of the stripes
smaller than the layer thickness. Nevertheless the stripes
come wider with increasinggP . When gP approaches the
upper limiting valuegP2 , l tends rapidly to infinity. The
anglesu in the two halves of the stripe become nearly ind

FIG. 8. The dimensionless wave numberQ of mode 2 as a
function of the planar anchoring parametergP for the ks values
indicated at each curve:~a! p51.137,~b! p52, and~c! p510. In
~c! the two branches of theks50.1 curve correspond to two range
of the stripes’ existence.
2-6
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STRUCTURE OF SPONTANEOUS PERIODIC . . . PHYSICAL REVIEW E 63 021702
pendent ofy over a significant part of each half, and ta
values corresponding to the homogeneous hybrid struct
The anglesw become close to zero, with the exception
narrow regions~‘‘walls’’ ! between the halves. The near
homogeneous regions in each half of a stripe spread ove
whole layer and the homogeneous hybrid structure repla
the periodic state.

In a narrow range ofks.0 in vicinity of ks50, there are
two ranges ofgP for which periodic deformations can b
realized: 0,gP,gP18 and gP19 ,gP,gP2 . They are sepa-
rated by a gap in which the planar state takes place.
limiting valuesgP18 andgP19 , calculated by numerical mini
mization of the free energy, and those derived from the lin
analysis coincide. The amplitudesum(z) andwm(z) decrease
to zero whengP→gP18 or gP→gP19 , whereas the wave
lengthsl remain finite. For higherks , the gap betweengP18
andgP19 disappears. This means that in the prevailing par
the positiveks range the homogeneous planar state is forb
den. The stripes of finite width may exist down togP50.
The amplitudesum(z) andwm(z) reach a minimum for some
gP and do not vanish. Figure 9 summarizes the above st
ments, showing the regions of existence of the interes
states in the (gP /gc ,ks) plane for the threep ratios. The
uniform planar alignment can exist only in the narrow ran
of ks in vicinity of ks50. This range increases withp. The
upper limit gP2 grows withks .

Figure 10 shows the dependence of the spatial period
ks for gP5gc . The spatial period diverges to infinity whe
ks tends to 0 according to approximate power lawQ5ks

b ,
whereb'0.5 for eachp.

C. Visibility of the stripes

The calculations of light transmitted through the differe
parts of a stripe when the layer is placed between cros

FIG. 9. Regions of existence of the periodically deformed st
for the positive saddle-splay elastic constantks . The inset shows
the details forgP /gc<1; solid line: p51.137; dashed line:p
52; dotted line:p510. In the main figure, the periodically de
formed state takes place below each curve, whereas the hom
neous hybrid alignment is realized above it. In the inset, the p
odic state occurs on the right-hand side of each curve, and
uniform planar orientation appears on the left side.
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polarizers~making angles of6p/4 with the stripes! allow
one to an estimate of their visibility. Figure 11 shows thr
examples of theT(h) functions for a high contrast stripe, fo
a poorly visible stripe and for a stripe with an additional da
line in the middle of the central bright band.~Such a pattern
corresponds to the experimental observations@11#.! It was
found that the stripes of mode 1 were distinct almost in
whole range of their existence, whereas only the strong
riodic deformations of mode 2 were visible when they a
peared for sufficiently highk24.0.

IV. DISCUSSION

Periodic deformations in the hybrid nematic layers a
fairly complex phenomena. Their features depend on m
parameters—three elastic constant ratioskb , kt , and ks
and at least two anchoring parametersgP and gH . In this
paper, we found the structure of the splay stripes and de
mined the conditions for their existence. We focused o
single typical liquid crystal and chose the material para

e

ge-
i-
he

FIG. 10. The dimensionless wave numberQ as a function of the
positive saddle-splay elastic constantks for gP5gc ; the p values
are indicated for each curve.

FIG. 11. The exemplary transmission of a single stripe betw
crossed polarizersp52; solid line: a distinct stripe,ks520.15,
gP51.1, and l/d586; dashed line: a poorly visible stripe,ks

50.05, gP51, andl/d56.1; dotted line: a ‘‘doubled’’ stripe,ks

520.15,gP51.6, andl/d5166.
2-7
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eters of 5CB. We assumed a conical degeneracy of the
face anchoring. Since the value of the surfacelike elastic c
stantk24 is unknown, it was varied within the limits dete
mined by the Ericksen inequalities. The crucial role ofk24
described in Ref.@8# was confirmed. The properties of th
small periodic deformations were studied using a lin
analysis method.

Our results are consistent with the theoretical predicti
made in Ref.@8#. The results described in Sec. III and som
additional calculations mentioned below allow the ma
properties of the periodic deformations in the hybrid align
nematic layers to be summarized as follows.

~i! There are two modes of the splay stripes, correspo
ing to two signs of the quantityR5122kt22ks . They
differ not only in the form of the director distribution bu
also in their minimum widths. For mode 1,l is always
greater thand, whereas for mode 2 the relationl,d can
take place.

In our case, whenkt50.5, R changes its sign atks50.
This explains the peculiar role ofks50. In Ref. @8#, where
kt51, there were also two ranges ofks , separated by the ga
centered atks520.5 ~i.e., at R50). We checked numeri
cally that there were two different periodic modes in each
this ranges. Their structure was different from modes 1 an
illustrated in Figs. 1 and 6. This result reveals that one
expect many variants of the periodic director distributio
corresponding to various material parameters and ancho
conditions. In particular the role ofkt seems to be equally
important as that ofks .

~ii ! The stripes of mode 1 were found for arbitrarily hig
gP . We relate this result to the conical degeneracy of
surface anchoring. We checked numerically that when
rotations of the surface director around thez axis were hin-
dered~as assumed in Ref.@8#!, the wave number of the pe
riodic structure decreased to zero for finitegP . This denotes
the existence of an upper boundarygP2 between the stripes
and the homogeneous hybrid regions due to the infinite
vergence of the spatial period.

In the case of the conical degeneracy, one can tentati
estimate the extent of the periodic state by comparing its
energy per unit area with the energy of the homogeneo
hybrid aligned layer. With this approach, the upper lim
gP2 correspond to the equality of these energies. They
shown in Fig. 4 by dashed lines. In real samples, the lat
boundaries and other imperfections can limit the largest p
sible width of the stripe.

Another effect, which we relate to the conical degenera
is the divergence of the mode 1 spatial period whengP tends
to gP1 . The results of Ref.@8#, and our additional calcula
tions, showed finitel at gP1 if nondegenerated anchorin
conditions were imposed. On the other hand, when the c
cal degeneracy is introduced to equations used in Ref.@8#,
the divergence is obtained.

~iii ! For sufficiently high positiveks , thegP range of the
stripes occurrence spreads down togP50. ~This effect was
also presented in Ref.@8# for ks.0.) For small values of
positiveks , we found two ranges ofgP ~Fig. 10! separated
by a gap for which the uniform planar orientation was re
ized.
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The experimental data presented in Ref.@11# show that
the spatial periodl depends monotonically on the laye
thicknessd, and range ofd in which the stripes were ob
served was bounded from above. Qualitatively, behavior
this type corresponds to mode 2 if not very smallgP values
are considered. However, the stripes of mode 2 are ra
narrow, andl is comparable withd in a wide range ofgP .
The narrowest observed stripes were about ten times w
than d, so they cannot be identified with mode 2. As co
cerns mode 1, the experimental evidence of the uniform p
nar orientation for very thin layers@2# corresponds to its
properties. The experimental dependencel(d) is also com-
parable with numerical data found for mode 1~when gP is
not extremely small!. However, the experiment shows som
signs of divergence of thel(d) function, suggesting the ex
istence of an upper limiting valuegP2 , which was not found
numerically. Summarizing, a qualitative agreement betw
the experimental data and the numerical results canno
fully achieved either for mode 1 or mode 2 if conical dege
eracy is assumed.

As stated above in~ii !, the limit gP2 appears, andl(gP1)
becomes finite when the surface director rotations about tz
axis are hindered. It seems to be plausible that numer
simulations of mode 1 would give results consistent with
experimental data, if the surface anchoring conditions w
nondegenerated. Therefore, we suggest that assump
concerning the degeneracy of the surface anchoring or
ideal planar and homeotropic conditions do not exactly
flect the real physical situation taking place during the e
periments. We hope that future experiments will yield ad
tional material for verification of corresponding numeric
simulations.

The periodic deformations described in this paper can
considered as an interesting example of the pattern forma
phenomena which are observed in various physical syst
@21#. In general, spatially periodic patterns arise under
influence of external excitation when some threshold va
of a suitable stress parameter is exceeded. The system
comes unstable to infinitesimal perturbations with wave v
tor q0 which are amplified. A new equilibrium state arise
with the appearance of self-organization and order, whic
seen as a pattern.

For potential systems such as hybrid aligned nematic
ers, the amplitude of the perturbations is governed by eq
tions which have the form of equilibrium condition
for forces or torques. In our case, the correspond
equations concern the elastic, viscous, and surface tor
exerted on the director. ThegP /gc ratio can be adopted as
proper measure of the excitation. The small anglesu andw
can be treated as perturbations of the uniform planar st
Their time evolution can be described by exponential te
exp(st), wheres is the growth rate. A detailed analysis o
the growth of the instability is beyond the scope of this p
per. Nevertheless let us note that the result of linear anal
expressed by Eq.~17! corresponds to the critical values
50, which separates the conditions for damping the per
bations (s,0) from the conditions for amplifying them (s
.0).
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